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We consider the problem of the soliton dynamics in anharmonic chains with nearest-neighbor interactions
and negative group velocity. By using the quasicontinuum approach we derive analytic expressions for enve-
lope solitons. We observe that these solitons are stable under collisions and, moreover, in the absence of losses
they can propagate with nearly any desired velocity. Energy loss effects are discussed by considering the
presence of Stokes and hydrodynamical damping. Numerical simulations are performed showing a good
agreement with the theory.
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Phenomena associated with wave-packet propagation in a
medium with negative group velocity �NGV� is often coun-
terintuitive. For instance, backward pulse propagation
through a NGV medium �1� was recently experimentally ob-
served. Similar behavior has been theoretically predicted for
soliton propagation in left-handed surfaces �2,3�. Other phe-
nomena such as superluminal group velocity has been ex-
perimentally observed in erbium-doped optical fibers �1� and
coaxial photonic crystals �4�, and predicted for metamaterials
�5�.

Nonlinearity combined with NGV give rise to interesting
phenomena in wave propagation. A complete understanding
of these phenomena is important in a view of possible appli-
cations. So, some physical insight can be gained by analyz-
ing analytically the propagation of solitary waves �in short
solitons� in a NGV medium. In fact, one of the most simple
systems to study effects due to the interplay between nonlin-
earity and NGV is the finite chain of electrical coupled non-
linear oscillators, as shown in Fig. 1 �6–8�. Notice that an-
harmonic chains play an important role in physics and the
soliton concept is useful in explaining essential features,
such as energy transport. Moreover, the study of anharmonic
chains in the context of metamaterials and special materials
is even stronger when looking into the possibility of actually
synthesizing the metamaterial by resembling the anharmonic
chain response �9�.

In this work, we shall present a theory for the soliton
propagation on the simple NGV anharmonic chain, as shown
in Fig. 1 �6–8�. We note that the existence of breathers �10�
and solitons in chains of split-ring oscillators has been pre-
dicted in the frame of the nonlinear Schrödinger equation
�11�.

In Fig. 1 we show a chain of identical electrical oscillators
with anomalous dispersion. Here we consider that either ca-
pacitances or inductances are nonlinear. Notice, for instance,
that varactor diodes can be used as nonlinear capacitances,
C=�0W��vn�, which are functions of voltage differences
�vn �6,12�. On the other hand, ferrimagnetic materials have
been suggested for obtaining a nonlinear inductive response,
L=�0W�In�, function of a current In �13�. �0 is constant and
the nonlinear function W�un�=un+�un

p with p�1 and � is
constant. Notice that un can be identified in Fig. 1 as either a
potential difference �vn=vn−vn−1 across a nonlinear capaci-
tance or a current In flowing through a nonlinear inductance.

In the following we consider the cases of constant induc-
tances, L=�0, and nonlinear capacitances, C=�0W�un�, and
vice versa �C=�0 and L=�0W�un��.

The Lagrangian of the NGV anharmonic chain �Fig. 1�
reads as

L = �
n�Z

��0

2
�d�qn

dt
�2

+
�0�

p + 1
�d�qn

dt
�p+1

−
qn

2

2�0
	 , �1�

where �qn=qn−qn−1 and the generalized coordinate

qn = 
� vndt for L = �0, C = �0W��vn� ,

�
j

n � Ijdt for C = �0, L = �0W�In� . � �2�

By using Lagrangian formulation it is straightforward to
obtain equations of motion

�
d2

dt2 �W�un−1� − 2W�un� + W�un+1�� = un + G , �3�

where un=d�qn /dt and �=�0�0 is constant. The term G in
Eq. �3� has been added to represent the energy losses of the
system. If nothing else is said we can consider G=0. Notice
that Eq. �3� can also be obtained by using Kirchhoff’s circuit
laws.

In order to study the soliton solutions of Eq. �3� we con-
sider the case p=3 for the nonlinear function W�un�. For the
more general case of cubic plus quartic anharmonic term, the
calculations are similar �14�, yet require a greater technical
effort �14–16�.

By examining the harmonic case of Eq. �3�, i.e., �=0, in
the absence of losses it is straightforward to determine the
dispersion relation 	h and the group velocity vg,

FIG. 1. Left-handed anharmonic chain of identical oscillators:
vn−vn−1 is the potential difference across the nth capacitance C and
In is the current through the nth inductance L.
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	h =
1

2
�
�csc� k

2
��, vg =

− 1

4
�
csc� k

2
�cot� k

2
� . �4�

For k→0 both 	g and vg diverge, i.e., 	h→
 and vg→−

�see Fig. 2�. On the other hand, vg→0 for k→�.

Since Eq. �3� in the absence of losses �G=0� cannot be
solved analytically, we use the quasicontinuum approxima-
tion �QCA� to calculate soliton solutions �16–20� which we
use as initial conditions for the numerical simulations. In
order to proceed with the QCA, Eq. �3� with G=0 is trans-
formed into an operator equation using the full Taylor expan-
sion of the potential term �W�un±1�→exp�±�n�W(u�x , t�)�

4� sinh2��n/2��t
2W„u�n,t�… = u�n,t� , �5�

where n can be regarded as a continuous variable.
Notice that Eq. �5�, which is still exact, cannot bear pulse

soliton solutions. This can be easily seen if we integrate Eq.
�5� twice with respect to time. In this case on the right-hand

side of Eq. �5� appears a term ��0
t dt��0

t�dt�u�n , t��, which
diverges for t→ +
 if u�n , t� is a single pulse.

Here we proceed to use the QCA for oscillatory excita-
tions, as was performed for a conventional anharmonic chain
of oscillators in Refs. �14,16�. So, here we assume that there
exist an oscillatory excitation whose envelope moves with a
constant velocity v and therefore depends on the coordinate
z=n−vt. In Ref. �14� an ansatz is given by an expansion into
harmonics �=kn−	t+
,

un�t� = �
m�Z

�m�z�eim�, �m = �̃−m, �6�

where k is the wave number, 
 is phase, and 	 is a frequency
to be determined later. Inserting Eq. �6� in Eq. �5� and Fou-
rier transforming the resultant equation we obtain

�W̃m�q� = am�q��̃m�q� �7�

with

am�q� =
1

4 sin2�mk + q

2
��m	 + vq�2

. �8�

Here, the tilde marks the Fourier transformed function, e.g.,

W̃m�q� =
1


2�
�

−





dzeiqzWm�z� , �9�

where Wm is an abbreviation which collects all products of
envelope functions that belong to the same harmonic eim�,
i.e.,

�
m

Wm�z�eim� = W��
l

�l�z�eil�� . �10�

It is remarkable to note in Eq. �8� that in contrast with the
conventional anharmonic chain the singularity for q→0 re-
mains if m=0, i.e., Eq. �3� cannot bear pulse solitons, as
mentioned above. On the other hand, it is also remarkable to
note that for m�0 and q→0 the wave number k can take
infinitely small values since the frequency term 	�	h, as
we show below.

The QCA consists in a formal solution of Eq. �7� for

W̃m�q� and in an expansion of the fraction am�q� �Eq. �8�� for
small q �14,16�, i.e., am�q���nanmqn. If we consider the
expansion of the fraction am�q� up to second order in q,
forcing the first-order term of the expansion to be zero, and
transforming back to the position space, we find a second-
order differential equation for the first harmonic �1, namely,

a01�1 − a21�z
2�1 = ���1 + 3���1�p−1�1�, p = 3. �11�

Notice that the Vakhitov-Kolokov stability criterion for an
elliptic equation, as Eq. �11�, shows that for p�4 soliton
solutions exist, i.e., they do not blow up �21,22�.

Integrating by parts Eq. �11� and integrating again leads to
a solution for the envelope which depends on the sign of �,

u�z� =
�
2�1 − v0

2�
3�v0

2 sech�2
 1 − v0
2

8	h
2 − 1

z�cos��� �12�

for ��0 and v0
2�1, while for ��0 and v0

2�1 the dark
envelope soliton reads as

u�z� =
�
�1 − v0

2�
3�v0

2 tanh�
2�v0
2 − 1�

8	h
2 − 1

z�cos��� . �13�

In Eqs. �12� and �13� 	=v0	h and the soliton velocity is v
=v0vg. Since 	h and vg depend on k �see Eq. �4��, it is
convenient to choose k and v0 as free parameters �14�.

As we mentioned above, 	 here turns out to be propor-
tional to 	h, so the singularity in Eq. �8� for q→0 and m
�0 is removed, i.e., small-amplitude solitons exist for any
finite k value in the first Brillouin zone.

It is also interesting to note that since the soliton velocity
v is proportional to the group velocity vg� �0,−
�, the soli-
ton can in principle move with nearly any desired velocity.

Notice also in Eqs. �12� and �13� that for a given v0 the
soliton widths are proportional to 	h. In fact, for k→0
�vg→−
� we obtain that k	h→1 /
�. This indicates that for
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FIG. 2. �Color online� Dispersion relation 	h vs k �left-hand
side�, and group velocity vh vs k �right-hand side�. Solid lines:
Curves in the absence of damping ��S=�h=0� or in the presence of
the hydrodynamical damping ��S=0 and �h=0.05�. Note that curves
are undistinguishable. Dashed lines: Curves in the presence of
Stokes damping ��S=0.05 and �h=0�, �=1.
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small values of k �high soliton velocities� the number of
oscillations of the carrier wave being modulated by the en-
velope remains constant, i.e., the soliton width scales with
the wavelength of the carrier wave. So, for k→0 the wave-
length and the soliton width tend to infinity.

Here, it is worth mentioning that, although the soliton
solutions exist, modulational instability �MI� can be present
in the system. In fact, by using modulational stability analy-
sis in discrete lattices in the fashion similar to Ref. �23� we
observe that MI can appear for harmonic solutions even
when ��0. MI is easily observed in numerical simulations
for narrow solitons and breather solutions, as mentioned be-
low.

In order to simulate Eq. �3� we always choose �= ���=1.
At t=0 the chain is initialized with the soliton shapes given
in Eqs. �12� and �13�. The simulations have been performed
for chains with at least 1000 lattice points. The time integra-
tion is carried out by using the Heun method �25� which has
been successfully used for the numerical solution of nonlin-
ear lattice systems �15,16,20,24�.

Since the system is a NGV medium, the parameter v0
must be chosen negative �positive� in order that the solitons
move to the right-hand �left-hand� direction. On the other
hand, �v0��1 in order to get small soliton amplitudes and
wide soliton widths. For large amplitudes and narrow widths
MI is observed, i.e., in the bright-soliton case, the initial
pulse envelope gets broader as time goes on and eventually
breaks in a series of wave packets.

For k=� we observe a breather solution, i.e., an envelope
with zero velocity whose amplitude oscillates rapidly in
time. For long time scales �t�1000� MI is observed in the
same fashion as for narrow solitons. We note that MI in the
case of dark breathers ���0� is observed as broadening of
the dark envelope and appearance of wave packets nearby.

For k�� we observe soliton solutions which are stable
under collisions, i.e., the soliton envelope is not altered after
the collision. In Figs. 3 and 4 we show, for example, colli-
sions of bright and dark solitons, respectively, with a bright
breather. In particular in Fig. 3 it is also possible to observe
the amplitude oscillations in time of the bright breather, as
mentioned above.

We note that in the case of dark-dark collisions it is dif-
ficult to observe collisions for solitons with different k, since
the carrier wave of one dark soliton hides the shape of the
other, and vice versa. For dark solitons with the same k we
observe stable collisions, but their amplitude oscillates in
time.

We have performed simulations up to k=� /100 which
corresponds to soliton velocities around 1000. In Fig. 5 we
show, for example, the position of a bright soliton vs time for
three different velocities obtained from numerical simula-
tions and compared with the expected theoretical result. A
very good agreement is observed. For larger velocities
�smaller k� the simulations are difficult since the soliton
width gets larger and larger, and the step size of the numeri-
cal integrator must be chosen smaller and smaller, due to the
high soliton velocity.

So far, we have considered the soliton propagation with-
out energy dissipation �G=0�. But in order to consider a
more realistic system we have included energy loss effects
due to the elements of the system. In this case we have
considered that every capacitance and inductance has a
single resistance RC and RL connected in parallel, respec-
tively. In this case the function G in Eq. �3� reads as
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FIG. 3. �Color online� Collision between a bright soliton
�k=� /10, v0=−0.999� and a bright breather �k=� , v0=0.999�:
snapshots for t=0, 60, and 120.

�0.05

0.00

0.05

u n

t�0

�0.05

0.00

0.05

u n

t�24

200 400 600 800
�0.05

0.00

0.05

n

u n

t�48

FIG. 4. �Color online� Collision between a dark soliton
�k=� /10, v0=−1.001� and a bright breather �k=� , v0=0.999�:
snapshots for t=0, 24, and 48.
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FIG. 5. �Color online� Position �n� of a bright soliton vs time
�t� for v0=−0.999 and k=� /10 �v=10.09�, k=� /32 �v=103.71�,
and k=� /100 �v=1013.17�. Dotted lines are results from simula-
tions and solid lines are results from the theory �n=vt, where
v=v0vg with vg given by Eq. �4��.
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G = �S
dun

dt
− �h�dun+1

dt
− 2

dun

dt
+

dun−1

dt
� , �14�

where �S=L /RL and �h=L /RC are the Stokes and the hydro-
dynamical damping coefficients, respectively. We note that
Eq. �14� is exact for nonlinear capacitances, while it is an
approximation for nonlinear inductances. In fact, for the case
of nonlinear inductances the damping terms are nonlinear,
however, since we are considering small amplitude solitons,
Eq. �14� turns out to be a good approximation for this case.

Damping effects on lattice solitons in anharmonic chains
have been extensively studied �15,16,20,24�, showing an ex-
ponential decay of the amplitude in time. An exponential
coefficient multiplying the soliton amplitude can be esti-
mated by solving the harmonic system, i.e., Eqs. �3� and �14�
with �=0, for a wave packet. It is straightforward to deter-

mine that the soliton amplitude decays like u�e−�s	h
2t/2 for

the Stokes damping ��S�0 and �h=0� and like u�e−�ht/�2��

for the hydrodynamical damping ��h�0 and �S=0�. These
estimations fit very well results from numerical simulations,
showing that the Stokes-damping effect is much stronger
than the hydrodynamical one. In fact, we observe that in the
presence of the Stokes damping the soliton amplitude u→0
for k→0. It is also easy to check, by looking at the disper-
sion relation in the presence of the Stokes damping �see Fig.
2�, that the group velocity vanishes for k→0. So, no soliton
propagation is possible for infinitesimal small k values when
the Stokes damping is present. In contrast, the
hydrodynamical-damping effect on the group velocity dis-
persion is negligible for k→0 �see Fig. 2: the curves in the
presence of hydrodynamical damping or in the total absence
of damping are undistinguishable�.

In order to observe soliton propagation in a realistic ex-
perimental realization the losses must be reduced, in particu-
lar those related with the inductance since they are respon-
sible for the Stokes damping. Another possibility consists of
adding energy to the system by, for example, connecting to
every node of the chain a current source controlled by the

node voltage vn. In fact, to some extent, a similar idea has
been used in pulse propagation in nonlinear optical systems
with NGV whose losses have been compensated by a gain in
the system �1�.

In conclusion, we have shown soliton solutions for the
most simple NGV anharmonic chain of electrical oscillators.
We have shown that this anharmonic chain cannot bear pulse
solitons, but envelope solitons which are stable under colli-
sions for finite wave numbers in the first Brillouin zone. We
observe that these envelope solitons in the absence of losses
can propagate with nearly any desired velocity, i.e.,
v� �0,
�. We have also noted that for small wave-number
values the soliton width scales with the wavelength of the
carrier wave. Modulational instability has been observed for
narrow solitons as well as for breather solutions. Finally, we
have included energy losses by considering the presence of
both the Stokes and the hydrodynamical damping. We have
observed that in particular Stokes damping, which is related
to losses in the inductances, affects strongly the soliton dy-
namics for small wave numbers.

Despite the fact that the experimental realization of this
NGV anharmonic chain may be difficult, it is interesting to
observe that soliton dynamics presented here, to some extent,
resemble phenomena already observed in nonlinear optics
such as superluminal and backward propagation.

It also is worth mentioning that by using the continuum
approximation the basic discrete system, given in Eq. �3�,
can be approached by several NGV versions of very impor-
tant differential equations, namely the nonlinear Schrödinger
equation, the Boussinesq equation, and the Korteweg-de
Vries equation. Since solutions obtained with the quasicon-
tinuum approximation used here usually are more general
than those obtained with the continuum approximation, it can
be expected that reductions of the soliton solutions given
here may also lead to solutions of NGV versions of the sys-
tems mentioned above. Finally, the present work is not only
of relevance for metamaterial applications, but also can be of
interest in nonlinear laser physics, Bose-Einstein condensate
physics, and hydrodynamics.
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